
Mastering SharePoint list relationships in PowerApps

Overview:

The project involved developing a solution using PowerApps application with multiple

SharePoint list that are related with each other. This project showcasing Power Apps working

with List Relationships (Establishing a 1:N relationship between projects and tasks in

SharePoint/Microsoft Lists.).

Technologies:
SharePoint, PowerApps (Canvas Apps),

Project Description:

This PowerApp is connected to multiple SharePoint lists that are related to each other. The
home screen showcases data from the project list. A user can select a project, look at the
details of the project, edit the details, add new projects, delete projects, and perform full
CRUD operations. For a specific project, the user can go to its related tasks, and we will get
an editable grid-like experience that showcases the tasks that are related to that selected
project. The user can make changes to the data; they can click save, and the updates are
made to the data source. We can add new tasks for specific project saves; the entire
PowerApps system will be fully responsive.

Sample and Design :

Steps:

 First lets understand the schema of SharePoint list.

 Create a list, name it as projects (Main List).

 Add columns Title, Description, Status, StartDate, EndDate, Project Manager.

 Create another list, and name it as Tasks (Related List).

 Add columns Title, DueDate, Description, Priority.

 Create a relationship more like a connection is SharePoint between the two lists
and to do that add a column of type lookup. This makes a column from one list
become the choice of selection from another list (Column name, Project lookup,
Type- lookup, select source list projects, select a column from the above list title,
select more options, deletion from source list affect this list. And select deleting
source items deleted value in this list.

 Create items in both the lists, In tasks list create item Project plan, provide
description, priority and due date and in project lookup provide Project list’s item
title as lookup and save it.

Project List

Task List

To make Canvas App in SharePoint

 Go to make.powerapps.com

 Go to home -> start with a page design.

 Select gallery connected to external data.

 Choose a dataset to start from SharePoint site. Pick up SharePoint list, Click create

App.

 Now App is ready, The connected list is project list.

 You can add a new project by clicking on + button.

 To add task related to project and create a full grid like experience something similar
to the Grid view experience in SharePoint itself allows for that first connect to task
list, add data, SharePoint list and connect.

 To create a task screen, create a add screen, select layout as header and footer.

 Go to my newly created screen, go to header container, and add a header label and
make the name as tasks.

 We need to create the grid in the main container of the screen.

 In new screen we have footer container, above the grid, If we like to give option to
the user to go back, or create an item in the grid or save the grid.

 For that right click on footer container in tree view, move up, so it sets above the
main container.

 Copy project screen header label and paste it on new screen header container.

 In text property provide “Tasks for ”& RecordGallery1.Selected.Title .
[RecordGallery1 is on the main screen]

 From project screen we need a option for the user to the task screen. We have a
container named as selectedRecordheaderContainer1, go and insert a button
control, add text for the button control as “Tasks”.

 In OnSelect property of the button provide Navigate(Screen1).

 For the middle container, here we would like to give an option for the user to go
back to the previous screen. Just select the container and add text as “Back”.

 In OnSelect property of back button provide back(). [The back function in
powerapps returns to the screen that was most recently displayed].

 To load all the tasks that are related to specific project from tasks screen and show
them in a gallery, In OnVisible of task screen we need to create a collection

ClearCollect(colGridData, Filter(Tasks, ‘Project lookup’.Value=
RecordsGallery1.selected.Title))

 To load all the tasks that are related to specific project from tasks screen and show
them in a gallery. In OnVisible of tasks screen we need to create a collection for
that we need to create a collection.
ClearCollect(colGridData, Filter(Tasks, project
looks.Value=RecordsGallery1.Selected.Title

 Now to show this tasks in main container, we will insert a gallery by inserting
vertical gallery and rename this gallery as Tasks gallery.

 The Items property for this gallery will be colGridData and we are creating editable
grid like experience. In the gallery we will add controls specific to column type of
tasks list.

 For description add inputText and in value property add ThisItem.description.

 For duedate add a date picker in value property add ThisItem.DueDate.

 For priority add a choice column in value property add choices(Task.Priority), and
add fields, for defaultselectedItems provide ThisItem.Priority.

 Add a button to middle container and name it as Save.

 Now when ever a change is made to any of the controls. We would like to store the
updated data in another collection, For that in the tasks gallery we will add a
button, name the button as btnUpdate, sets its visibility to false.

 Now go ahead and select all the controls which user can change on all of these, for
that in Onchange property provide Select(btnUpdates).

 In that update button in OnSelect property provide
If(IsBlank(Lookup(colGridUpdates, ID=ThisItem.ID)) collect(colGridUpdates,
ThisItem)
[If the item is not exist in the collection only then add the item to the collection. After
this update the data in new collection colGridUpdates, where ID is ThisItem.ID and
here we will define columns that we are updating. For that UpdateIf(colGridUpdates,
ID=ThisItem.ID, {Title:txtTitle.Value, Description: txtDescription.Value, Date:
dpDueDate.Value, Priority: {Value:drpPriority.selected.value}})

 When the user clicks save button, In OnSelect we will Patch to Task List for that in
OnSelect= Patch(Tasks, ShowColumns(colGridUpdates, “Title”, ”Description”,
“DueDate”, “Project lookup”, “ID”); Clear(colGridUpdates)

 To give user an option to create an item in the middle container we will add a
button and name it as “Add”, In OnSelect Patch(Tasks, Default(Tasks),{Title: ”New
Task”, Priority: {Value: “medium”}, Project lookup:
{Value:RecordsGallery1.Selected.Title, Id: RecordsGallery1.selected.ID}})

 Add a button to the middle container and name it as btnLoadGrid and in select
property provide ClearCollect(colGridData, Filter(Tasks, ‘ProjectLookup’.Value =
RecordsGallery1.Selected.Title))); Clear(colGridUpdates)

 In TaskScreen OnVisible change to Select(btnLoadGrid).

 In button Add’s OnSelect property after Patch() call the same function
Select(btnLoadGrid).

 When Saving after Save, we will call that button for this in save button’s OnSelect
property after Patch provide Select(btnLoadGrid).

 To remove white space between items in the gallery, makeTemplateSize property
value to 40.

 The save button should only be enabled if user has made any updates to the Grid, So
for the DisplayMode of the button If(CountRows(colGridUpdates)>0,
DisplayMode.Edit, DisplayMode.Disabled)

 For DisplayMode property of Add button if(CountRows(colGridUpdates)=0,
DisplayMode.Edit, DisplayMode.Disabled).

 To add headers we need to add a container and and add text controls for controls
and make adjustments, make width of the container as Gallery2.Width

This project was successfully completed by using the above-mentioned technology, and it is
maintaining the required requirements.

	Overview:
	Technologies:
	Project Description:

